揭秘合成器(5):深入滤波器  (一)

  • 作者:Gordon Reid

  • 编译:Rejor(@Evilsine)

  • 出处:Sound On Sound

在本系列的第四篇文章中,我们认识了音频滤波器,讲解了音频滤波器同时具有相位调制的功能。但前文中我们略过了滤波器最重要的功能:移除频谱中的一部分谐波从而创造新的声音。但滤波器的工作方式可远没有听起来简单,本文我们将继续深入了解滤波器的原理。

揭秘合成器(5):深入滤波器  (一)
图 1:一个简单的低通滤波器电路 

图 1 展示的是我们在上一篇文章中介绍的被动低通 RC 滤波器(之所以称它为「被动」是因为我们将只需要输入信号,不需要额外供电的电子元器件称之为「被动元件」,因此电阻器、电容器以及电感器均为被动元件,而晶体管以及其他放大器则不是被动元件)。如果你有阅读上一篇文章,那么你可能还记得 RC 滤波器的截止频率可以通过其电路中的两个被动元件的容量决定。 

输入进滤波器的信号与经过滤波器处理的输出信号之间的关系叫做传递函数。准确来说,传递函数描述的是滤波器的振幅相应(滤波器对音量的影响)以及相位响应,但由于我们已经在上一篇文章中讨论了滤波器对音频相位的影响,本文中我们只将关注振幅相应。理想状态下,我们的 RC 滤波器的传递函数非常简单:每高于截止频率(本文中记作 Fc)的两倍,信号的输出就将会减半(见图 2)。

揭秘合成器(5):深入滤波器  (一)
图 2:RC 低通滤波器在理想状态下的响应图示 

所以,打比方说 Fc 为 1kHz,那么信号在 2kHz 位置处的增益为 1/2(也就是说一半的音量),4kHz 的位置输出增益为 1/4(四分之一音量),以此类推...由于频率每翻一倍音高就上升一个八度(octave),同时增益每减半一次振幅就衰减 6 个分贝(6dB),因此这一响应又被称为 6dB/octave 滤波。 

但尽管类似图 2 的图示在音乐界中被广泛应用,它其实并不准确。图 3 为一个更精确的传递函数图示。

揭秘合成器(5):深入滤波器  (一)
图 3:较为精确的 RC 低通滤波器响应图示 

可以看到,信号在截止频率的位置已经衰减了 3dB。这并不是一个错误,实际上,在电工学中截止频率就是信号衰减 3dB 的位置。所以本文要总结的第一条规律就是: 

被动低通滤波器在什么位置开始工作并不是由截止频率决定的;截止频率是信号已经衰减了 3dB 的位置。另外,由于 3dB 的衰减可以轻易被人耳感知,这也就意味着,信号在截止频率的位置已经受到了明显的影响。 

让我们回过头来想想看简易的低通滤波器会对常见波形产生什么样的影响。简单起见,我们将以图 2 中的理想低通滤波器为例,因为它的尖锐「拐点」能够将滤波器的工作简化许多。

揭秘合成器(5):深入滤波器  (一)
图 4:锯齿波的前 200 个谐波 

图 4 是最常见的模拟合成器波形之一——锯齿波的谐波结构。其所有谐波均存在,各谐波的幅度与基频幅度呈 1/n 的简单关系(n 为谐波次数)。

揭秘合成器(5):深入滤波器  (一)
图 5:使用对数轴表示的上述 100Hz 锯齿波的谐波结构 

图 4 展示的使用传统单位表示的锯齿波的前 200 个谐波的幅度。然而,与图 4 相比,使用图 5 中的对数轴来展示这些谐波要合适得多。但即使你不懂什么是对数也没有关系,因为尽管图 4 与图 5 看起来很不同,两者其实表示的是同样的信息。之所以我在这里选择使用对数图表是因为使用对数表示的振幅是一条直线,因此能够更明确地展示滤波器对其的影响。实际上,如果你回过头来观察图 2 和图 3,这两张图中使用的其实也是对数轴。

揭秘合成器(5):深入滤波器  (一)
图 6:3kHz,6dB/octave 低通滤波器对于 100Hz 锯齿波的影响 

假如说我们有一个截止频率为 3kHz 的 6dB/octave RC 滤波器,让我们来看看它会对基频为 100Hz 的锯齿波造成什么样的影响。图 6 展示的是该滤波器对于 3kHz 以上的频率的衰减。不难发现图 6 中的图形与图 5 相比有一个「折叠」,该图形符合上文提到的 6dB/octave 的规律。


点此查看全部正在连载中的《揭秘合成器》系列教程